MapleDESeriesSolnNew.mws

Series Solution Example

Some Polynomial Approximations

Truncated series solutions are graphed in red (Order 7) and then maroon (Order 10), blue (Order 12), green (Order 14), magenta (Order 24), brown (Order 36), orange (Order 60)

and black (Order 86).

>    ode:=diff(y(x),x,x)+x*diff(y(x),x)-2*y(x)=sin(x);

ode := diff(y(x),`$`(x,2))+x*diff(y(x),x)-2*y(x) = sin(x)

>    Order:=7;

Order := 7

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+O(x^7),x,7)

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+O(x^7),x,7)

>    poly:=convert(%,polynom);

poly := x+1/3*x^3-1/40*x^5

>    eval(poly,x=2.0);

3.866666667

>    with(plots):SeriesSoln:=plot(poly,x=0..7,y=-60..60,color=red,thickness=2):

>    display(SeriesSoln);

[Maple Plot]

>    Order:=10;

Order := 10

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+O(x^10),x,10)

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+O(x^10),x,10)

>    poly1:=convert(%,polynom);

poly1 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9

>    eval(poly1,x=2.0);

4.048677249

>    with(plots):SeriesSoln1:=plot(poly1,x=0..7,y=-60..20,color=maroon,thickness=2):

>    display(SeriesSoln1);

[Maple Plot]

>    Order:=12;

Order := 12

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11+O(x^12),x,12)

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11+O(x^12),x,12)

>    poly2:=convert(%,polynom);

poly2 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11

>    eval(poly2,x=2.0);

4.067045054

>    SeriesSoln2:=plot(poly2,x=0..7,y=-60..60,color=blue,thickness=2):

>    display(SeriesSoln1,SeriesSoln2);

[Maple Plot]

>    Order:=14;

Order := 14

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+O(x^14),x,14)

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+O(x^14),x,14)

>    poly3:=convert(%,polynom);

poly3 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13

>    eval(poly3,x=2.0);

4.062805014

>    SeriesSoln3:=plot(poly3,x=0..7,y=-60..60,color=green,thickness=2):

>    display(SeriesSoln1,SeriesSoln2,SeriesSoln3);

[Maple Plot]

>    Order:=24;

Order := 24

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    poly4:=convert(%,polynom);

poly4 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
poly4 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    eval(poly4,x=2.0);

4.063549282

>    SeriesSoln4:=plot(poly4,x=0..7,y=-60..60,color=magenta,thickness=2):

>    display(SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4);

[Maple Plot]

>    Order:=36;

Order := 36

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    poly5:=convert(%,polynom);

poly5 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
poly5 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
poly5 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
poly5 := x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    eval(poly5,x=2.0);

4.063549192

>    SeriesSoln5:=plot(poly5,x=0..7,y=-60..60,color=brown,thickness=2,numpoints=200):

>    display(SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4,SeriesSoln5);

[Maple Plot]

>    Order:=60;

Order := 60

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    poly6:=convert(%,polynom);

poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...
poly6 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-14908189197541974095741773/3987407362182...

>    eval(poly6,x=2.0);

4.063549192

>    SeriesSoln6:=plot(poly6,x=0..7,y=-60..60,color=orange,thickness=2,numpoints=200):

>    Order:=86;

Order := 86

>    dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series);

y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...
y(x) = series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/131002415824896...

>    rhs(%);

series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...
series(1*x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9+179/19958400*x^11-293/566092800*x^13+5909/217945728000*x^15-460903/355687428096000*x^17+3456773/60822550204416000*x^19-3013597/1310024158248960000*x^...

>    poly7:=convert(%,polynom);

poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...
poly7 := -15331254937373604662936432714791/328837175696925043407539519491492280745411060643601055744000000000000*x^53+x+1/3*x^3-1/40*x^5+1/504*x^7-17/120960*x^9-1688902772311103380476644574232403544463...

>    eval(poly7,x=2.0);

4.063549192

>    SeriesSoln7:=plot(poly7,x=0..7,y=-60..60,color=black,thickness=2,numpoints=200):

>    display(SeriesSoln,SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4,SeriesSoln5,SeriesSoln6,SeriesSoln7);

[Maple Plot]

>    display(SeriesSoln,SeriesSoln1,SeriesSoln2,SeriesSoln3,SeriesSoln4,SeriesSoln5,SeriesSoln6,SeriesSoln7);

[Maple Plot]

>