MapleDampedForcedVibration.mws

Damped Forced Vibration Example

From the End of the Chapter Four Notes and Examples

Here are some Maple commands to solve this problem.

Solution and Graphs:  Solution in orange, steady-state solution in green, transient solution in blue

>    ode:=diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=2*cos(t);

ode := diff(y(t),`$`(t,2))+3*diff(y(t),t)+2*y(t) = 2*cos(t)

>    dsolve(ode,y(t));

y(t) = 1/5*cos(t)+3/5*sin(t)-exp(-2*t)*_C1+exp(-t)*_C2

>    ic:=y(0)=0,D(y)(0)=0;

ic := y(0) = 0, D(y)(0) = 0

>    dsolve({ode,ic},{y(t)});

y(t) = 1/5*cos(t)+3/5*sin(t)+4/5*exp(-2*t)-exp(-t)

>    f:=rhs(%);

f := 1/5*cos(t)+3/5*sin(t)+4/5*exp(-2*t)-exp(-t)

>    with(plots):

>    solution:=plot(f,t=0..6*Pi,y=-1..1,color=orange,thickness=2,labels=[t,y]):

>    transient:=plot((4/5)*exp(-2*t)-exp(-t),t=0..6*Pi,y=-1..1,color=blue,thickness=2,labels=[t,y]):

>    steady:=plot((1/5)*cos(t)+(3/5)*sin(t),t=0..6*Pi,y=-1..1,color=green,thickness=2,labels=[t,y]):

>    display(solution,transient,steady);

[Maple Plot]

>