Series Solution Take-Home Number 6
With and Without Initial Conditions
Below are examples with type = series and unspecified type.
> | ode:=diff(y(x),x,x,x)-2*(x^2)*diff(y(x),x,x)+3*x*diff(y(x),x)-2*y(x)=0; |
> | Order:=20; |
> | dsolve({ode},y(x),type=series); |
> | dsolve({ode},y(x)); |
> | dsolve({ode,y(0)=0,D(y)(0)=0,D(D(y))(0)=2},y(x),type=series); |
> | dsolve({ode,y(0)=0,D(y)(0)=0,D(D(y))(0)=2},y(x)); |
Notice what a difference a change in one of the initial conditions makes.
> | dsolve({ode,y(0)=0,D(y)(0)=1,D(D(y))(0)=2},y(x),type=series); |
> | rhs(%); |
> | poly1:=convert(%,polynom); |
> | with(plots): |
> | SeriesSoln1:=plot(poly1,x=0..4,y=-4..16,color=red): |
> | Soln:=plot(x^2,x=0..4,y=-4..16,color=blue): |
> | display(Soln,SeriesSoln1); |
> | Order:=32; |
> | dsolve({ode,y(0)=0,D(y)(0)=1,D(D(y))(0)=2},y(x),type=series); |
> | rhs(%); |
> | poly2:=convert(%,polynom); |
> | SeriesSoln2:=plot(poly2,x=0..4,y=-4..16,color=green): |
> | display(Soln,SeriesSoln1,SeriesSoln2); |
> | dsolve({ode,y(0)=0,D(y)(0)=1,D(D(y))(0)=2},y(x)); |
> |