Airy's Equation
One Version
Truncated series solutions are produced here and graphed. The form of Airy's equation being looked at here is
y'' + xy = 0, y(0) = 0, y'(0) = 1.
> | ode:=diff(y(x),x,x)+x*y(x)=0; |
> | Order:=12; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
Warning, the name changecoords has been redefined
> | with(plots):SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> | Order:=16; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
> | SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> | Order:=20; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
> | SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> | Order:=24; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
> | SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> | Order:=32; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
> | SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> | Order:=40; |
> | dsolve({ode,y(0)=0,D(y)(0)=1},y(x),type=series); |
> | rhs(%); |
> | poly:=convert(%,polynom); |
> | SeriesSoln:=plot(poly,x=0..6,y=-6..6,color=blue): |
> | display(SeriesSoln); |
> |