> | with(plots): |
Warning, the name changecoords has been redefined
> | f:=(x^4+x^3-7*x^2-x+6)/(x^2-16); |
> | fprime:=diff(f,x); |
> | Q:=quo(x^4+x^3-7*x^2-x+6,x^2-16,x); |
> | fGraph:=plot(f,x=-10..10,y=-100..100,thickness=2,discont=true): |
> | Qgraph:=plot(x^2+x+9,x=-10..10,y=-100..100,thickness=2,color=blue): |
> | VertAsym1:=implicitplot(x=-4,x=-10..10,y=-100..100,thickness=2,color=blue): |
> | VertAsym2:=implicitplot(x=4,x=-10..10,y=-100..100,thickness=2,color=blue): |
The function is graphed below in red along with the vertical asymptotes in blue and the "asymptotic parabola" in blue.
> | display(fGraph,Qgraph,VertAsym1,VertAsym2); |
> | display(fGraph); |
Notice that if we do not set "discont=true" Maple attempts to connect points on each side of a vertical asymptote. The result is to draw nearly vertical lines that appear to be part
of the graph of the function.
> | fGraph2:=plot(f,x=-10..10,y=-100..100,thickness=2): |
> | display(fGraph2); |
> | fsolve({fprime},{x},-6..-4); |
> | eval(f,x=-5.088511437); |
> | fsolve({fprime},{x},-4..-2); |
> | eval(f,x=-2.412333637); |
> | fsolve({fprime},{x},-1..1); |
> | eval(f,x=-.7436981272e-1); |
> | fsolve({fprime},{x},1..2); |
> | eval(f,x=1.600749930); |
> | fsolve({fprime},{x},4..6); |
> | eval(f,x=5.474464957); |
Let's look at a "blow-up" of the graph around some of the critical points.
> | plot(f,x=-3..3,y=-3..3,thickness=2); |
> |