MapleLimitDemo.mws

>    with(plots):

Warning, the name changecoords has been redefined

>    f:=(x^4)*cos(100*Pi*x);

f := x^4*cos(100*Pi*x)

>    Limit(f,x=2);

Limit(x^4*cos(100*Pi*x),x = 2)

>    value(%);

16

>    point1:=pointplot([2,16],color=blue):

>    curve1:=plot(f,x=1.9..2.1,y=-20..20,labels=[x,y],thickness=2,axes=boxed):

>    display(curve1,point1);

[Maple Plot]

>    curve2:=plot(f,x=1.999..2.001,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed):

The curve is plotted below with a delta value of 0.001 and epsilon equal to 0.001 but not enough points are used in constructing the plot (the default number of points used is 50).

>    display(curve2,point1);

[Maple Plot]

More points are being used in constructing the graph.

>    curve2:=plot(f,x=1.999..2.001,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed,numpoints=200):

>    display(curve2,point1);

[Maple Plot]

In the graph below the delta value is 0.0001.

>    curve3:=plot(f,x=1.9999..2.0001,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed,numpoints=200):

>    display(curve3,point1);

[Maple Plot]

In the graph below the delta value is 0.00001.

>    curve4:=plot(f,x=1.99999..2.00001,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed,numpoints=200):

>    display(curve4,point1);

[Maple Plot]

This time delta equals 0.00002.

>    curve5:=plot(f,x=1.99998..2.00002,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed,numpoints=200):

>    display(curve5,point1);

[Maple Plot]

Here we have a delta value of 0.0000206 which is just about as large as delta can be when epsilon equals 0.001.

>    curve6:=plot(f,x=1.9999794..2.0000206,y=15.999..16.001,labels=[x,y],thickness=2,axes=boxed,numpoints=200):

>    display(curve6,point1);

[Maple Plot]

>