> | with(plots): |
> | f:=(5*x^4-6*x^2+4*x-9)/(2*x^3-16*x+4); |
> | fprime:=diff(f,x); |
> | Q:=quo(5*x^4-6*x^2+4*x-9,2*x^3-16*x+4,x); |
> | fGraph:=plot(f,x=-10..10,y=-30..30,thickness=2,discont=true): |
> | Qgraph:=plot(5*x/2,x=-10..10,y=-30..30,thickness=2,color=blue): |
> | fsolve({2*x^3-16*x+4},{x}); |
> | VertAsym1:=implicitplot(x=-2.945995202,x=-10..10,y=-30..30,thickness=2,color=blue): |
> | VertAsym2:=implicitplot(x=0.2520003852,x=-10..10,y=-30..30,thickness=2,color=blue): |
> | VertAsym3:=implicitplot(x=2.693994817,x=-10..10,y=-30..30,thickness=2,color=blue): |
The function is graphed below in red along with the vertical asymptotes in blue and the slant anymptote in blue.
> | display(fGraph,Qgraph,VertAsym1,VertAsym2,VertAsym3); |
> | display(fGraph); |
Notice that if we do not set "discont=true" Maple attempts to connect points on each side of a vertical asymptote. The result is to draw nearly vertical lines that appear to be part
of the graph of the function.
> | fGraph2:=plot(f,x=-10..10,y=-30..30,thickness=2): |
> | display(fGraph2); |
We can aproximate a relative maximum point and a relative minimum point.
> | fsolve({fprime},{x},-6..-4); |
> | eval(f,x=-4.843859207); |
> | fsolve({fprime},{x},4..5); |
> | eval(f,x=4.555525404); |
> |
Let's look at a "blow-up" of the graph around the origin. We can observe two inflection points.
> | plot(f,x=-2.5..2.5,y=-3..3,thickness=2,discont=true); |
> | fDoublePrime:=diff(f,x,x); |
> | fsolve({fDoublePrime},{x},-1..0); |
> | eval(f,x=-.7270678089); |
> | fsolve({fDoublePrime},{x},0.5..1.5); |
> | eval(f,x=.9716981036); |
> |