MapleQuotientGraph2.mws

Maple Support For Exam III

Problems 10, 7, 4, 5

>    with(plots):

Warning, the name changecoords has been redefined

Number 10

>    f:=(x^4+x^3-7*x^2-x+6)/(x^2-9);

f := (x^4+x^3-7*x^2-x+6)/(x^2-9)

>    factor(x^4+x^3-7*x^2-x+6);

(x-1)*(x-2)*(x+3)*(x+1)

>    (x-1)*(x-1)*(x+3)*(x+1);

>    factor(x^2-9);

(x-3)*(x+3)

>    simplify(((x-1)*(x-2)*(x+3)*(x+1))/((x-3)*(x+3)));

(x-2)/(x-3)*(x^2-1)

Note that x cannot equal -3 in the simplification above.

>    fprime:=diff(f,x);

fprime := (4*x^3+3*x^2-14*x-1)/(x^2-9)-2*(x^4+x^3-7*x^2-x+6)/(x^2-9)^2*x

>    Q:=quo(x^4+x^3-7*x^2-x+6,x^2-9,x);

Q := x^2+x+2

>    fGraph:=plot(f,x=-10..10,y=-100..100,thickness=2,discont=true):

>    Qgraph:=plot(x^2+x+2,x=-10..10,y=-100..100,thickness=2,color=blue):

>    Limit(f,x=-3);

Limit((x^4+x^3-7*x^2-x+6)/(x^2-9),x = -3)

>    value(%);

20/3

We have a removable discontinuity at (-3,20/3).

>    RemovDiscont:=pointplot([-3,20/3],symbol=circle,symbolsize=16,color=green):

>    VertAsym:=implicitplot(x=3,x=-10..10,y=-100..100,thickness=2,color=blue):

The function is graphed below in red along with the vertical asymptote in blue, the "asymptotic parabola" in blue, and the removable discontinuity in green.

>    display(fGraph,Qgraph,VertAsym,RemovDiscont);

[Maple Plot]

>    display(fGraph);

[Maple Plot]

Notice that if we do not set "discont=true" Maple attempts to connect points on each side of a vertical asymptote.  The result is to draw nearly vertical lines that appear to be part

of the graph of the function.

>    fGraph2:=plot(f,x=-10..10,y=-100..100,thickness=2):

>    display(fGraph2);

[Maple Plot]

Let's look at a "blow-up" of the graph around some of the critical points.

>    plot(f,x=-3..3,y=-3..3,thickness=2);

[Maple Plot]

>    fsolve({fprime},{x},-1..1);

{x = -.7771830483e-1}

>    eval(f,x=-.7771830483e-1);

-.6710063760

>    fsolve({fprime},{x},1..2);

{x = 1.629443541}

>    eval(f,x=1.629443541);

.4474845938

>    fsolve({fprime},{x},3..5);

{x = 3.948274764}

>    eval(f,x=3.948274764);

29.97352179

We have relative minimum points at approximately (-0.0771830483,-0.6710063760) and (3.948274764,29.97352179 and a relative maximum point at approximately

(1.629443541,0.4474845938).

>    fPP:=diff(f,x,x);

fPP := (12*x^2+6*x-14)/(x^2-9)-4*(4*x^3+3*x^2-14*x-1)/(x^2-9)^2*x+8*(x^4+x^3-7*x^2-x+6)/(x^2-9)^3*x^2-2*(x^4+x^3-7*x^2-x+6)/(x^2-9)^2

>    fsolve({fPP},{x},0..2);

{x = 1.000000000}

>    eval(f,x=1);

0

>    eval(fPP,x=0.99);

.2970248127e-1

>    eval(fPP,x=1.01);

-.3030251874e-1

We have an inflection point at (1,0).

>    eval(f,x=-3.01);

6.718985191

>    eval(f,x=-2.99);

6.614540735

>    plot(f,x=-3.01..-2.99,y=6.614540735..6.718985191,thickness=10,discont=true);

[Maple Plot]

Number 7

>    f7:=(3*x^2+5*x-8)/(x+2);

f7 := (3*x^2+5*x-8)/(x+2)

>    f7Graph:=plot(f7,x=-6..6,y=-50..50,thickness=2,discont=true):

>    f7Q:=quo(3*x^2+5*x-8,x+2,x);

f7Q := 3*x-1

>    f7QGraph:=plot(f7Q,x=-6..6,y=-50..50,thickness=2,color=blue):

>    f7VertAsym:=implicitplot(x=-2,x=-6..6,y=-50..50,thickness=2,color=blue):

>    display(f7Graph,f7QGraph,f7VertAsym);

[Maple Plot]

Number 4

>    f4:=x^3/(x-2);

f4 := x^3/(x-2)

>    f4Graph:=plot(f4,x=-6..6,y=-50..50,thickness=2,discont=true):

>    f4Q:=quo(x^3,x-2,x);

f4Q := x^2+2*x+4

>    f4QGraph:=plot(f4Q,x=-6..6,y=-50..50,thickness=2,color=blue):

>    f4VertAsym:=implicitplot(x=2,x=-6..6,y=-50..50,thickness=2,color=blue):

>    display(f4Graph,f4QGraph,f4VertAsym);

[Maple Plot]

>    f4P:=diff(f4,x);

f4P := 3*x^2/(x-2)-x^3/(x-2)^2

>    solve({f4P},{x});

{x = 3}, {x = 0}, {x = 0}

>    eval(f4,x=0);

0

>    eval(f4,x=3);

27

There are critical points at (0,0) and (3,27).  The critical point (3,27) is a relative minimum point.  The critical point (0,0) is not a relative minimum or a relative maximum.  It looks like it is

an inflection point.

>    f4PP:=diff(f4,x,x);

f4PP := 6*x/(x-2)-6*x^2/(x-2)^2+2*x^3/(x-2)^3

>    solve({f4PP},{x});

{x = 0}, {x = 3+3^(1/2)*I}, {x = 3-I*3^(1/2)}

>    eval(f4PP,x=-1);

38/27

>    eval(f4PP,x=1);

-14

Clearly the point (0,0) is an inflection point.

Number 5

>    f5:=x^3-4*x^2+4*x;

f5 := x^3-4*x^2+4*x

>    f5Graph:=plot(f5,x=-2..4,y=-10..10,thickness=2):

>    display(f5Graph);

[Maple Plot]

>    f5P:=diff(f5,x);

f5P := 3*x^2-8*x+4

>    solve({f5P},{x});

{x = 2}, {x = 2/3}

>    eval(f5,x=2/3);

32/27

>    eval(f5,x=2);

0

The critical point (2/3,32/27) is a relative maximum point and the critical point (2,0) is a relative minimum point.

>    f5PP:=diff(f5,x,x);

f5PP := 6*x-8

>    solve({f5PP},{x});

{x = 4/3}

>    eval(f5,x=4/3);

16/27

We have an inflection point at (4/3,16/27).

>    CritInfPoints:=pointplot([[0,0],[2/3,32/27],[4/3,16/27],[2,0]],symbol=circle,symbolsize=16,color=green):

>    display(f5Graph,CritInfPoints);

[Maple Plot]

>