Maple Support For Exam III
Problems 10, 7, 4, 5
> | with(plots): |
Warning, the name changecoords has been redefined
Number 10
> | f:=(x^4+x^3-7*x^2-x+6)/(x^2-9); |
> | factor(x^4+x^3-7*x^2-x+6); |
> | (x-1)*(x-1)*(x+3)*(x+1); |
> | factor(x^2-9); |
> | simplify(((x-1)*(x-2)*(x+3)*(x+1))/((x-3)*(x+3))); |
Note that x cannot equal -3 in the simplification above.
> | fprime:=diff(f,x); |
> | Q:=quo(x^4+x^3-7*x^2-x+6,x^2-9,x); |
> | fGraph:=plot(f,x=-10..10,y=-100..100,thickness=2,discont=true): |
> | Qgraph:=plot(x^2+x+2,x=-10..10,y=-100..100,thickness=2,color=blue): |
> | Limit(f,x=-3); |
> | value(%); |
We have a removable discontinuity at (-3,20/3).
> | RemovDiscont:=pointplot([-3,20/3],symbol=circle,symbolsize=16,color=green): |
> | VertAsym:=implicitplot(x=3,x=-10..10,y=-100..100,thickness=2,color=blue): |
The function is graphed below in red along with the vertical asymptote in blue, the "asymptotic parabola" in blue, and the removable discontinuity in green.
> | display(fGraph,Qgraph,VertAsym,RemovDiscont); |
> | display(fGraph); |
Notice that if we do not set "discont=true" Maple attempts to connect points on each side of a vertical asymptote. The result is to draw nearly vertical lines that appear to be part
of the graph of the function.
> | fGraph2:=plot(f,x=-10..10,y=-100..100,thickness=2): |
> | display(fGraph2); |
Let's look at a "blow-up" of the graph around some of the critical points.
> | plot(f,x=-3..3,y=-3..3,thickness=2); |
> | fsolve({fprime},{x},-1..1); |
> | eval(f,x=-.7771830483e-1); |
> | fsolve({fprime},{x},1..2); |
> | eval(f,x=1.629443541); |
> | fsolve({fprime},{x},3..5); |
> | eval(f,x=3.948274764); |
We have relative minimum points at approximately (-0.0771830483,-0.6710063760) and (3.948274764,29.97352179 and a relative maximum point at approximately
(1.629443541,0.4474845938).
> | fPP:=diff(f,x,x); |
> | fsolve({fPP},{x},0..2); |
> | eval(f,x=1); |
> | eval(fPP,x=0.99); |
> | eval(fPP,x=1.01); |
We have an inflection point at (1,0).
> | eval(f,x=-3.01); |
> | eval(f,x=-2.99); |
> | plot(f,x=-3.01..-2.99,y=6.614540735..6.718985191,thickness=10,discont=true); |
Number 7
> | f7:=(3*x^2+5*x-8)/(x+2); |
> | f7Graph:=plot(f7,x=-6..6,y=-50..50,thickness=2,discont=true): |
> | f7Q:=quo(3*x^2+5*x-8,x+2,x); |
> | f7QGraph:=plot(f7Q,x=-6..6,y=-50..50,thickness=2,color=blue): |
> | f7VertAsym:=implicitplot(x=-2,x=-6..6,y=-50..50,thickness=2,color=blue): |
> | display(f7Graph,f7QGraph,f7VertAsym); |
Number 4
> | f4:=x^3/(x-2); |
> | f4Graph:=plot(f4,x=-6..6,y=-50..50,thickness=2,discont=true): |
> | f4Q:=quo(x^3,x-2,x); |
> | f4QGraph:=plot(f4Q,x=-6..6,y=-50..50,thickness=2,color=blue): |
> | f4VertAsym:=implicitplot(x=2,x=-6..6,y=-50..50,thickness=2,color=blue): |
> | display(f4Graph,f4QGraph,f4VertAsym); |
> | f4P:=diff(f4,x); |
> | solve({f4P},{x}); |
> | eval(f4,x=0); |
> | eval(f4,x=3); |
There are critical points at (0,0) and (3,27). The critical point (3,27) is a relative minimum point. The critical point (0,0) is not a relative minimum or a relative maximum. It looks like it is
an inflection point.
> | f4PP:=diff(f4,x,x); |
> | solve({f4PP},{x}); |
> | eval(f4PP,x=-1); |
> | eval(f4PP,x=1); |
Clearly the point (0,0) is an inflection point.
Number 5
> | f5:=x^3-4*x^2+4*x; |
> | f5Graph:=plot(f5,x=-2..4,y=-10..10,thickness=2): |
> | display(f5Graph); |
> | f5P:=diff(f5,x); |
> | solve({f5P},{x}); |
> | eval(f5,x=2/3); |
> | eval(f5,x=2); |
The critical point (2/3,32/27) is a relative maximum point and the critical point (2,0) is a relative minimum point.
> | f5PP:=diff(f5,x,x); |
> | solve({f5PP},{x}); |
> | eval(f5,x=4/3); |
We have an inflection point at (4/3,16/27).
> | CritInfPoints:=pointplot([[0,0],[2/3,32/27],[4/3,16/27],[2,0]],symbol=circle,symbolsize=16,color=green): |
> | display(f5Graph,CritInfPoints); |
> |