MapleVolumeSum.mws

A Volume Example

with approximations

In this example the volume of the solid of revolution formed by revolving the graph of y = x^2 + 2 about the x-axis over the x-interval [-1,2] is investigated.

>    with(plots):

Warning, the name changecoords has been redefined

The region being revolved about the x-axis is pictured below.

>    plot(x^2+2,x=-1..2,filled=true);

[Maple Plot]

The surface of revolution is graphed below.

>    surface1:=implicitplot3d(y^2+z^2=(x^2+2)^2,x=-1..2,y=-6..6,z=-6..6,axes=boxed,orientation=[225,45]):

>    display(surface1);

[Maple Plot]

The volume of the associated solid is computed below from a definite integral using the Fundamental Theorem of Calculus to find the exact volume.  A decimal approximation is also computed.

>    Int(Pi*(x^2+2)^2,x=-1..2);

Int(Pi*(x^2+2)^2,x = -1 .. 2)

>    value(%);

153/5*Pi

>    Vol:=evalf(%);

Vol := 96.13273521

The loop below constructs 12 cylinders approximating the surface of revolution.  The cylinders are formed by partitioning the interval [-1,2] into 12 equal sized subintervals and using the midpoint of each subinterval in computing the radius of each cylinder.

>    cylind:=Array(1..12):

>    for i from 1 to 12 do

>    cylind[i]:=implicitplot3d(y^2+z^2=(2+(-1+(3/12)*(i-0.5))^2)^2,x=-1.25+i*0.25..-1+i*0.25,y=-6..6,z=-6..6,axes=boxed,orientation=[225,45]):

>    end do:

>    display(seq(cylind[k],k=1..12));

[Maple Plot]

The sum of the volumes within each of the 12 approximating cylinders is computed below.

>    sum(Pi*((-1+(3/12)*(n-0.5))^2+2)^2*(3/12),n=1..12);

95.64293516

>    Vol;

96.13273521

The loop below constructs 24 cylinders approximating the surface of revolution.  The cylinders are formed by partitioning the interval [-1,2] into 24 equal sized subintervals and using the midpoint of each subinterval in computing the radius of each cylinder.

>    cylind:=Array(1..24):

>    for i from 1 to 24 do

>    cylind[i]:=implicitplot3d(y^2+z^2=(2+(-1+(3/24)*(i-0.5))^2)^2,x=-1.125+i*0.125..-1+i*0.125,y=-6..6,z=-6..6,axes=boxed,orientation=[225,45]):

>    end do:

>    display(seq(cylind[k],k=1..24));

[Maple Plot]

The sum of the volumes within each of the 24 approximating cylinders is computed below.

>    sum(Pi*((-1+(3/24)*(n-0.5))^2+2)^2*(3/24),n=1..24);

96.01008385

>    Vol;

96.13273521

The loop below constructs 48 cylinders approximating the surface of revolution.  The cylinders are formed by partitioning the interval [-1,2] into 48 equal sized subintervals and using the midpoint of each subinterval in computing the radius of each cylinder.

>    cylind:=Array(1..48):

>    for i from 1 to 48 do

>    cylind[i]:=implicitplot3d(y^2+z^2=(2+(-1+(3/48)*(i-0.5))^2)^2,x=-1.0625+i*0.0625..-1+i*0.0625,y=-6..6,z=-6..6,axes=boxed,orientation=[225,45]):

>    end do:

>    display(seq(cylind[k],k=1..48));

[Maple Plot]

The sum of the volumes within each of the 48 approximating cylinders is computed below.

>    sum(Pi*((-1+(3/48)*(n-0.5))^2+2)^2*(3/48),n=1..48);

96.10205979

>    Vol;

96.13273521

The sums below compute the sums of the volumes within each of 100, 1,000, 10,000, and 100,000 approximating cylinders.

>    sum(Pi*((-1+(3/100)*(n-0.5))^2+2)^2*(3/100),n=1..100);

96.12566685

>    sum(Pi*((-1+(3/1000)*(n-0.5))^2+2)^2*(3/1000),n=1..1000);

96.13266453

>    sum(Pi*((-1+(3/10000)*(n-0.5))^2+2)^2*(3/10000),n=1..10000);

96.13273452

>    sum(Pi*((-1+(3/100000)*(n-0.5))^2+2)^2*(3/100000),n=1..100000);

96.13273521

Of course the volume of the solid of revolution is the limit of this sum as n approaches infinity.

In the graph below we see the 12 approximating cylinders graph displayed along with a wireframe rendition of the surface.

>    surface2:=implicitplot3d(y^2+z^2=(x^2+2)^2,x=-1..2,y=-6..6,z=-6..6,axes=boxed,orientation=[225,45],style=wireframe,thickness=2):

>    display(surface2,seq(cylind[k],k=1..12));

[Maple Plot]

>