Maclaurin and Taylor Pollynomials
tan(x), esp(x), ln(x)
> | with(plots): |
Warning, the name changecoords has been redefined
tan(x)
> | evalf(tan(0.2)); |
> | evalf(0.2+0.2^3/3); |
> | evalf(tan(Pi/4)); |
> | evalf(Pi/4+(Pi/4)^3/3); |
> | Order:=10; |
> | t:=taylor(tan(x),x=0); |
Convert to a polynomial and then a function.
> | p:=convert(t,polynom); |
> | f:=p; |
> | eval(f,x=Pi/4); |
> | evalf(%); |
Here I graph tan(x) and the third and ninth Maclaurin polynomials.
> | P3:=plot(x+x^3/3,x=-Pi/2..Pi/2,y=-10..10,thickness=3,color=blue,labels=[x,y]): |
> | P9:=plot(f,x=-Pi/2..Pi/2,y=-10..10,thickness=3,color=green,labels=[x,y]): |
> | TanGraph:=plot(tan(x),x=-Pi/2..Pi/2,y=-10..10,thickness=3,color=red,labels=[x,y]): |
> | display(P3,P9,TanGraph); |
Construct and graph the tenth Maclaurin polynomial for exp(x).
> | Order:=11; |
> | te10:=taylor(exp(x),x=0); |
> | pe10:=convert(te10,polynom); |
> | pe10Graph:=plot(pe10,x=-10..10,y=-10..10000,thickness=3,color=blue,labels=[x,y]): |
> | ExpGraph:=plot(exp(x),x=-10..10,y=-10..10000,thickness=3,color=red,labels=[x,y]): |
> | display(pe10Graph,ExpGraph); |
Below we see exp(2) being approximated by 10th and 20th Maclaurin polynomials.
> | f:=pe10; |
> | eval(f,x=2); |
> | evalf(%); |
> | evalf(exp(2)); |
> | Order:=21; |
> | t20:=taylor(exp(x),x=0); |
> | pe20:=convert(t20,polynom); |
> | f:=pe20; |
> | eval(f,x=2); |
> | evalf(%); |
> | evalf(exp(2)); |
Here I graph ln(x) and the 10th Taylor polynomial for ln(x) centered at 1 and approximate ln(1.2) using the 10th Taylor polynomial centered at 1.
> | Order:=11; |
> | tln10:=taylor(ln(x),x=1); |
> | pln10:=convert(tln10,polynom); |
> | lnGraph:=plot(ln(x),x=0..2,thickness=3,color=red,labels=[x,y]): |
> | pln10Graph:=plot(pln10,x=0..2,thickness=3,color=blue,labels=[x,y]): |
> | display(lnGraph,pln10Graph); |
> | fln10:=pln10; |
> | eval(fln10,x=1.2); |
> | eval(ln(1.2)); |
> |