MapleSect57No71.mws

Section 5.7 #71

Maple Graphs and Calculations

>    with(plots):

Warning, the name changecoords has been redefined

>    plot(arcsin(x),x=0..1,filled=true);

[Maple Plot]

>    Int(arcsin(x),x=0..1);

Int(arcsin(x),x = 0 .. 1)

Maple is smart enough to be able to compute this exactly.

>    int(arcsin(x),x=0..1);

-1+1/2*Pi

Note that y = arcsin(x) means that x = sin(y).

>    implicitplot(x=sin(y),x=0..1,y=0..Pi/2,thickness=3);

[Maple Plot]

We can observe that the area of the region pictured above would be the area of a rectangle whose dimensions are Pi/2  by 1 minus the area of the region pictured below.

>    plot(sin(x),x=0..Pi/2,filled=true);

[Maple Plot]

In the picture constructed below I graphed the rectangular area in blue and graphed the sine area over it in red (the default color).

>    RectangleArea:=plot(1,x=0..Pi/2,color=blue,filled=true):

>    SineArea:=plot(sin(x),x=0..Pi/2,filled=true):

>    display(SineArea,RectangleArea);

[Maple Plot]

Thus we get the result below which would involve "easy" integration.

>    Int(arcsin(x),x=0..1) = Pi/2 - Int(sin(x),x=0..Pi/2);

Int(arcsin(x),x = 0 .. 1) = 1/2*Pi-Int(sin(x),x = 0 .. 1/2*Pi)

>    Pi/2-int(sin(x),x=0..Pi/2);

-1+1/2*Pi

>