Volume
of a region in space
This worksheet investigates the volume of the region of space under the graph of
and above the graph of z = 0 with x between -2.5 and 2.5 and y between -1.5 and 1.5.
Here is a picture of the region of space (or solid) whose volume we are going to approximate.
> | with(plots):plot3d(2+(sin((1+x*y)/3)),x=-2.5..2.5,y=-1.5..1.5,view=0..3,axes=boxed,orientation=[-120,60],filled=true); |
Here we are drawing the top surface over the region of the xy-coordinate plane described above and filling it in with 15 boxes.
> | part11:=plot3d(2+sin(-1/3),x=1.5..2.5,y=-1.5..-0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part12:=plot3d(2+sin(0),x=0.5..1.5,y=-1.5..-0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part13:=plot3d(2+sin(1/3),x=-0.5..0.5,y=-1.5..-0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part14:=plot3d(2+sin(2/3),x=-1.5..-0.5,y=-1.5..-0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part15:=plot3d(2+sin(1),x=-2.5..-1.5,y=-1.5..-0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part1:=plot3d(2+sin(1),x=1.5..2.5,y=0.5..1.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part2:=plot3d(2+sin(2/3),x=0.5..1.5,y=0.5..1.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part3:=plot3d(2+sin(1/3),x=-0.5..0.5,y=0.5..1.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part4:=plot3d(2+sin(0),x=-1.5..-0.5,y=0.5..1.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part5:=plot3d(2+sin(-1/3),x=-2.5..-1.5,y=0.5..1.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part6:=plot3d(2+sin(1/3),x=1.5..2.5,y=-0.5..0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part7:=plot3d(2+sin(1/3),x=0.5..1.5,y=-0.5..0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part8:=plot3d(2+sin(1/3),x=-0.5..0.5,y=-0.5..0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part9:=plot3d(2+sin(1/3),x=-1.5..-0.5,y=-0.5..0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | part10:=plot3d(2+sin(1/3),x=-2.5..-1.5,y=-0.5..0.5,axes=boxed,orientation=[-130,60],filled=true): |
> | surface:=plot3d(2+sin((1+x*y)/3),x=-2.5..2.5,y=-1.5..1.5,view=0..3,axes=boxed,orientation=[-130,60]): |
> | display(part1,part2,part3,part4,part5,part6,part7,part8,part9,part10,part11,part12,part13,part14,part15,surface); |
Here is the rest of the code for generating all the pictures in the animation. I kept adding more elements to the "display" command to generate each successive picture in the animated gif and then I used the mouse to change the viewing angle to generate more pictures to use in the animation.
> | B1:=spacecurve([2.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B2:=spacecurve([1.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B3:=spacecurve([0.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B4:=spacecurve([-0.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B5:=spacecurve([-1.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B6:=spacecurve([-2.5,-1.5+t,0,t=0..3],color=blue,thickness=3): |
> | B7:=spacecurve([-2.5+t,-0.5,0,t=0..5],color=blue,thickness=3): |
> | B8:=spacecurve([-2.5+t,0.5,0,t=0..5],color=blue,thickness=3): |
> | B9:=spacecurve([-2.5+t,1.5,0,t=0..5],color=blue,thickness=3): |
> | B10:=spacecurve([-2.5+t,-1.5,0,t=0..5],color=blue,thickness=3): |
> | H6:=spacecurve([2,1,t,t=0..2+sin((1+2)/3)],color=red,thickness=3): |
> | H7:=spacecurve([1,1,t,t=0..2+sin((1+1)/3)],color=red,thickness=3): |
> | H8:=spacecurve([0,1,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H9:=spacecurve([-1,1,t,t=0..2+sin((1-1)/3)],color=red,thickness=3): |
> | H10:=spacecurve([-2,1,t,t=0..2+sin((1-2)/3)],color=red,thickness=3): |
> | H11:=spacecurve([2,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H12:=spacecurve([1,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H13:=spacecurve([0,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H14:=spacecurve([-1,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H15:=spacecurve([-2,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H1:=spacecurve([2,-1,t,t=0..2+sin((1-2)/3)],color=red,thickness=3): |
> | H2:=spacecurve([1,-1,t,t=0..2+sin((1-1)/3)],color=red,thickness=3): |
> | H3:=spacecurve([0,-1,t,t=0..2+sin((1-0)/3)],color=red,thickness=3): |
> | H4:=spacecurve([-1,-1,t,t=0..2+sin((1+1)/3)],color=red,thickness=3): |
> | H5:=spacecurve([-2,-1,t,t=0..2+sin((1+2)/3)],color=red,thickness=3): |
Below we see just the top surface and the partition of the xy-coordinate plane.
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,surface); |
Below we see added red line segments representing the height of each approximating rectangular box.
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,surface); |
Below we see the final picture with all the approximating rectangular boxes drawn in.
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,surface,part1,part2,part3,part4,part5,part6,part7,part8,part9,part10,part11,part12,part13,part14,part15); |
Here we are computing the volume of the region using an iterated double integral.
> | Int(Int(2+sin((1+x*y)/3),x=-2.5..2.5),y=-1.5..1.5); |
> | evalf(%); |
Here we are approximating the volume of the region from 15 approximating rectangular boxes (see picture above).
In this case the area of the base of each approximating box is one.
> | Yvals:=-2: |
> | Volume:=0: |
> | for i from 1 to 3 do Yvals:=Yvals+1; Xvals:=-3; for j from 1 to 5 do Xvals:=Xvals+1; Volume:=Volume+2+sin((1.0+Xvals*Yvals)/3); end do: end do: |
> | Volume; |
Here we are approximating the volume of the region from 60 approximating rectangular boxes.
In this case the area of the base of each approximating box is 1/4.
> | Yvals:=-1.75: |
> | Volume:=0: |
> | for i from 1 to 6 do Yvals:=Yvals+0.5; Xvals:=-2.75; for j from 1 to 10 do Xvals:=Xvals+0.5; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/4; end do: end do: |
> | Volume; |
Here we are approximating the volume of the region from 240 approximating rectangular boxes.
In this case the area of the base of each approximating box is 1/16.
> | Yvals:=-1.625: |
> | Volume:=0: |
> | for i from 1 to 12 do Yvals:=Yvals+0.25; Xvals:=-2.625; for j from 1 to 20 do Xvals:=Xvals+0.25; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/16; end do: end do: |
> | Volume; |
Here we are approximating the volume of the region from 960 approximating rectangular boxes.
In this case the area of the base of each approximating box is 1/64.
> | Yvals:=-1.5625: |
> | Volume:=0: |
> | for i from 1 to 24 do Yvals:=Yvals+0.125; Xvals:=-2.5625; for j from 1 to 40 do Xvals:=Xvals+0.125; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/64; end do: end do: |
> | Volume; |
> |