Volume
of a region in space
This worksheet investigates the volume of the region of space under the graph of
and above the graph of z = 0 with x between -2.5 and 2.5 and y between -0.5 and 1.5.
Here is a picture of the region of space (or solid) whose volume we are going to approximate.
> | with(plots):plot3d(2+(sin((1+x*y)/3)),x=-2.5..2.5,y=-0.5..1.5,view=0..3,axes=boxed,orientation=[100,60],filled=true); |
Warning, the name changecoords has been redefined
Here we are drawing the top surface over the region of the xy-coordinate plane described above and filling it in with 10 boxes.
> | part1:=plot3d(2+sin(1),x=1.5..2.5,y=0.5..1.5,axes=boxed,orientation=[100,60],filled=true): |
> | part2:=plot3d(2+sin(2/3),x=0.5..1.5,y=0.5..1.5,axes=boxed,orientation=[100,60],filled=true): |
> | part3:=plot3d(2+sin(1/3),x=-0.5..0.5,y=0.5..1.5,axes=boxed,orientation=[100,60],filled=true): |
> | part4:=plot3d(2+sin(0),x=-1.5..-0.5,y=0.5..1.5,axes=boxed,orientation=[100,60],filled=true): |
> | part5:=plot3d(2+sin(-1/3),x=-2.5..-1.5,y=0.5..1.5,axes=boxed,orientation=[100,60],filled=true): |
> | part6:=plot3d(2+sin(1/3),x=1.5..2.5,y=-0.5..0.5,axes=boxed,orientation=[100,60],filled=true): |
> | part7:=plot3d(2+sin(1/3),x=0.5..1.5,y=-0.5..0.5,axes=boxed,orientation=[100,60],filled=true): |
> | part8:=plot3d(2+sin(1/3),x=-0.5..0.5,y=-0.5..0.5,axes=boxed,orientation=[100,60],filled=true): |
> | part9:=plot3d(2+sin(1/3),x=-1.5..-0.5,y=-0.5..0.5,axes=boxed,orientation=[100,60],filled=true): |
> | part10:=plot3d(2+sin(1/3),x=-2.5..-1.5,y=-0.5..0.5,axes=boxed,orientation=[100,60],filled=true): |
> | surface:=plot3d(2+sin((1+x*y)/3),x=-2.5..2.5,y=-0.5..1.5,view=0..3,axes=boxed,orientation=[100,60]): |
> | display(part1,part2,part3,part4,part5,part6,part7,part8,part9,part10,surface); |
Here is the code for generating all the pictures in the animation. I kept adding more elements to the "display" command at the bottom to generate each successive picture in the animated gif and then I used the mouse to change the viewing angle to generate more pictures to use in the animation.
> | B1:=spacecurve([2.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B2:=spacecurve([1.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B3:=spacecurve([0.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B4:=spacecurve([-0.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B5:=spacecurve([-1.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B6:=spacecurve([-2.5,-0.5+t,0,t=0..2],color=blue,thickness=3): |
> | B7:=spacecurve([-2.5+t,-0.5,0,t=0..5],color=blue,thickness=3): |
> | B8:=spacecurve([-2.5+t,0.5,0,t=0..5],color=blue,thickness=3): |
> | B9:=spacecurve([-2.5+t,1.5,0,t=0..5],color=blue,thickness=3): |
> | H6:=spacecurve([2,1,t,t=0..2+sin((1+2)/3)],color=red,thickness=3): |
> | H7:=spacecurve([1,1,t,t=0..2+sin((1+1)/3)],color=red,thickness=3): |
> | H8:=spacecurve([0,1,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H9:=spacecurve([-1,1,t,t=0..2+sin((1-1)/3)],color=red,thickness=3): |
> | H10:=spacecurve([-2,1,t,t=0..2+sin((1-2)/3)],color=red,thickness=3): |
> | H11:=spacecurve([2,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H12:=spacecurve([1,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H13:=spacecurve([0,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H14:=spacecurve([-1,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | H15:=spacecurve([-2,0,t,t=0..2+sin((1+0)/3)],color=red,thickness=3): |
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,surface); |
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,surface,part1,part2,part3,part4,part5,part6,part7,part8,part9,part10); |
Computing the volume of the region using an iterated double integral
> | Int(Int(2+sin((1+x*y)/3),x=-2.5..2.5),y=-0.5..1.5); |
> | evalf(%); |
Approximating the volume of the region from 10 approximating rectangular boxes (see picture above)
In this case the area of the base of each approximating box is one.
> | Yvals:=-1: |
> | Volume:=0: |
> | for i from 1 to 2 do Yvals:=Yvals+1; Xvals:=-3; for j from 1 to 5 do Xvals:=Xvals+1; Volume:=Volume+2+sin((1.0+Xvals*Yvals)/3); end do: end do: |
> | Volume; |
Approximating the volume of the region from 40 approximating rectangular boxes
In this case the area of the base of each approximating box is 1/4.
> | Yvals:=-0.75: |
> | Volume:=0: |
> | for i from 1 to 4 do Yvals:=Yvals+0.5; Xvals:=-2.75; for j from 1 to 10 do Xvals:=Xvals+0.5; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/4; end do: end do: |
> | Volume; |
Approximating the volume of the region from 160 approximating rectangular boxes
In this case the area of the base of each approximating box is 1/16.
> | Yvals:=-0.625: |
> | Volume:=0: |
> | for i from 1 to 8 do Yvals:=Yvals+0.25; Xvals:=-2.625; for j from 1 to 20 do Xvals:=Xvals+0.25; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/16; end do: end do: |
> | Volume; |
Approximating the volume of the region from 640 approximating rectangular boxes
In this case the area of the base of each approximating box is 1/64.
> | Yvals:=-0.5625: |
> | Volume:=0: |
> | for i from 1 to 16 do Yvals:=Yvals+0.125; Xvals:=-2.5625; for j from 1 to 40 do Xvals:=Xvals+0.125; Volume:=Volume+(2+sin((1.0+Xvals*Yvals)/3))/64; end do: end do: |
> | Volume; |
> |