Surface Area
of a surface in space
This worksheet investigates the area of the surface defined by
over the region of the xy-coordinate plane defined by x between -2.5 and 2.5 and y between -0.5 and 2.5.
Plotting the surface
> | with(plots):surface:=plot3d(9-y^2-x^2,x=-2.5..2.5,y=-0.5..2.5,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | display(surface); |
Using one tangent plane to approximate the surface
> | Tnplane16:=plot3d(10-2*y,x=-2.5..2.5,y=-0.5..2.5,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | display(surface,Tnplane16); |
Using four tangent planes to approximate the surface
> | Tnplane20:=plot3d(109/8-(5/2)*x-(7/2)*y,x=0..2.5,y=1..2.5,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | Tnplane19:=plot3d(109/8+(5/2)*x-(7/2)*y,x=-2.5..0,y=1..2.5,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | Tnplane18:=plot3d(87/8-(5/2)*x-(1/2)*y,x=0..2.5,y=-0.5..1,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | Tnplane17:=plot3d(87/8+(5/2)*x-(1/2)*y,x=-2.5..0,y=-0.5..1,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | display(surface,Tnplane17,Tnplane18,Tnplane19,Tnplane20); |
Using fifteen tangent planes to approximate the surface and showing the partition in the xy-coordinate plane
> | B1:=spacecurve([2.5,-0.5+t,-4,t=0..3],color=blue): |
> | B2:=spacecurve([1.5,-0.5+t,-4,t=0..3],color=blue): |
> | B3:=spacecurve([0.5,-0.5+t,-4,t=0..3],color=blue): |
> | B4:=spacecurve([-0.5,-0.5+t,-4,t=0..3],color=blue): |
> | B5:=spacecurve([-1.5,-0.5+t,-4,t=0..3],color=blue): |
> | B6:=spacecurve([-2.5,-0.5+t,-4,t=0..3],color=blue): |
> | B7:=spacecurve([-2.5+t,-0.5,-4,t=0..5],color=blue): |
> | B8:=spacecurve([-2.5+t,0.5,-4,t=0..5],color=blue): |
> | B9:=spacecurve([-2.5+t,1.5,-4,t=0..5],color=blue): |
> | B10:=spacecurve([-2.5+t,2.5,-4,t=0..5],color=blue): |
> | Tnplane1:=plot3d(11-2*x-2*y,x=0.5..1.5,y=0.5..1.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane2:=plot3d(17-4*x-4*y,x=1.5..2.5,y=1.5..2.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane3:=plot3d(14-4*x-2*y,x=1.5..2.5,y=0.5..1.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane4:=plot3d(14-2*x-4*y,x=0.5..1.5,y=1.5..2.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane5:=plot3d(13-4*y,x=-0.5..0.5,y=1.5..2.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane6:=plot3d(10-2*y,x=-0.5..0.5,y=0.5..1.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane7:=plot3d(11+2*x-2*y,x=-1.5..-0.5,y=0.5..1.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane8:=plot3d(14+2*x-4*y,x=-1.5..-0.5,y=1.5..2.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane9:=plot3d(14+4*x-2*y,x=-2.5..-1.5,y=0.5..1.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane10:=plot3d(17+4*x-4*y,x=-2.5..-1.5,y=1.5..2.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane11:=plot3d(13+4*x,x=-2.5..-1.5,y=-0.5..0.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane12:=plot3d(10+2*x,x=-1.5..-0.5,y=-0.5..0.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane13:=plot3d(9,x=-0.5..0.5,y=-0.5..0.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane14:=plot3d(10-2*x,x=0.5..1.5,y=-0.5..0.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | Tnplane15:=plot3d(13-4*x,x=1.5..2.5,y=-0.5..0.5,view=-4..10,axes=boxed,orientation=[100,60]): |
> | surface:=plot3d(9-y^2-x^2,x=-2.5..2.5,y=-0.5..2.5,view=-4..11.2,axes=boxed,orientation=[100,60]): |
> | display(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,Tnplane1,Tnplane2,Tnplane3,Tnplane4,Tnplane5,Tnplane6,Tnplane7,Tnplane8,Tnplane9,Tnplane10,Tnplane11,Tnplane12,Tnplane13,Tnplane14,Tnplane15,surface); |
Computing the area of the surface using an iterated double integral
> | int(int(sqrt(1+4*x^2+4*y^2),y=-0.5..2.5),x=-2.5..2.5); |
Approximating the area of the surface from 15 approximating pieces of tangent planes (see picture above)
> | Yvals:=-1: |
> | Area:=0: |
> | for i from 1 to 3 do Yvals:=Yvals+1; Xvals:=-3; for j from 1 to 5 do Xvals:=Xvals+1; Area:=Area+sqrt(4*Xvals^2+4*Yvals^2+1); end do: end do: |
> | Area; |
> | evalf(Area,8); |
Approximating the area of the surface from 60 approximating pieces of tangent planes
> | Yvals:=-0.75: |
> | Area:=0: |
> | for i from 1 to 6 do Yvals:=Yvals+0.5; Xvals:=-2.75; for j from 1 to 10 do Xvals:=Xvals+0.5; Area:=Area+(1/4)*sqrt(4*Xvals^2+4*Yvals^2+1); end do: end do: |
> | Area; |
Approximating the area of the surface from 240 approximating pieces of tangent planes
> | Yvals:=-0.625: |
> | Area:=0: |
> | for i from 1 to 12 do Yvals:=Yvals+0.25; Xvals:=-2.625; for j from 1 to 20 do Xvals:=Xvals+0.25; Area:=Area+(1/16)*sqrt(4*Xvals^2+4*Yvals^2+1); end do: end do: |
> | Area; |
Approximating the area of the surface from 960 approximating pieces of tangent planes
> | Yvals:=-0.5625: |
> | Area:=0: |
> | for i from 1 to 24 do Yvals:=Yvals+0.125; Xvals:=-2.5625; for j from 1 to 40 do Xvals:=Xvals+0.125; Area:=Area+(1/64)*sqrt(4*Xvals^2+4*Yvals^2+1); end do: end do: |
> | Area; |
> |